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Abstract

We address the problem of managing information in an interimistic environment following
a disruptive event that results in widespread failures of computers, networks, and other re-
sources. We motivate the problem and discuss the design requirements. As a concrete example
of such information management, we present our work on data dissemination in an interimistic
environment in which both network membership and data characteristics are subject to con-
tinual change. Our methods use low-overhead protocols to determine a suitable method for
routing a stream of data. We also present a brief experimental evaluation of our methods.
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1 Introduction

We address the problem ofinterimistic data management in the chaotic environment in the minutes and
hours following some catastrophic event, such as a natural disaster. A distinguishing feature of this work is
that it focuses on a very small (by database standards) window of time, ranging from hours to days, but not
weeks, months, or years. We may think of the problem as that of temporary data management, emphasizing
the high premium on operating during the short time following a disaster and the relative irrelevance of
longer term properties. This approach is in sharp contrast to the conventional bias of data management
systems, which favor long-term guarantees (consistency, durability, etc.) over short-term ones. We envision
scenarios in which our methods would be very useful for a few hours and then be rendered useless when the
environment is back to normal.

As a motivating scenario that we use throughout this paper, consider the situation just after (or during)
a devastating hurricane that has hit a typical suburban county. Such anevent is likely to cause widespread
power failures, road blockages, floods, and communication failures, among other problems. Although much
of the information infrastructure may be damaged or disabled, it is also very likely that there are parts of
it that function in a reasonable manner. For example, cellular and land-line phones may function in some
locations and not others. Power and other utilities may have similar spotty availability. Now consider an
ambulance responding to medical emergencies in this environment. It is likely that the crew is able to com-
municate with the central dispatch office using their reserved wireless frequencies. However, the office may
not be able to provide the crew with the information it needs because of problems with its computers or those
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of other agencies on which it depends. For example, due to problems with traffic management systems, dis-
patch may not be able to route the ambulance around road closures and other hazards. Further, we must also
consider the case in which the dispatch office suffers a catastrophic failure. Point-to-point communications
between ambulance and other crews may still be possible over the air waves,but keeping track of a variety
of information in an ad hoc manner over the radio will quickly become unmanageable. As a simple example
of a better solution, consider methods that maintain soft state about recent positions of ambulances (using
on-board Global Positioning System units and wireless communications) in a distributed manner. Simply
being able to visualize the recent trails of other vehicles is likely to provide useful information about road
conditions.

In the above scenario, it is quite likely that public buildings such as schoolhouses will be converted into
emergency shelters and medical centers. Such a center has a wealth of important information of interest
to others, such as, statistics on injuries, symptoms, and diagnoses that may help planners better judge the
situation and quench any burgeoning outbreaks of disease. Conversely, such a center also has pressing
information needs, such as the status of medical professionals and supplies in neighboring areas that could be
called into service. Some of these needs can and are met using telephones and other ad hoc communications.
However, consider the fact that the schoolhouse may have a perfectly working collection of computers,
perhaps with reasonable network connectivity. The quality of information would be greatly improved if
these systems, not designed for such uses, could be effectively pressed into service. Note that although one
may expect emergency workers to carry dedicated and well designed information systems, there is a need
for information beyond these systems. For example, although not life-saving, the ability to inform people of
the status of their homes and friends is valuable.

In this paper, we focus on methods for selective dissemination of semistructured data in the interimistic
environment described above. Briefly, we may describe this problem as the interimistic version of the well-
studied problem of selective dissemination of information. While the most obvious features that distinguish
this version of the problem from earlier work arise from the environment (e.g., lack of provisioning, high
failure rates), there are additional distinguishing features as well. Thereare multiple sources of data and
there is no qualitative difference between the hosts that serve as data sources and those that subscribe to
data. Further, the arrival rate of data is likely to be bursty and unpredictable.

We consider a setH of heterogeneous hosts (computers, of varying capabilities). There is asubsetS ⊆
H of hosts that are sources of semistructured data streams in XML form. The XML stream is not necessarily
segmented into documents or similar units and its structure is not known in advance. There is another subset
D ⊆ H of hosts that are interested in different parts of the streams emanating fromhosts inS. (The setsS
andD need not be disjoint.) The data interests are expressed usingXPath queries [9] that are interpreted as
subscriptions (standing queries). That is, there is a set of XPath queriesQ = {Qmn|m ∈ S, n ∈ D}, where
Qmn is the subscription of hostm ∈ D over the data emanating from hostn ∈ S. At a pointt in time, each
host inh ∈ H has limitsIh(t) andOh(t) on its incoming and outgoing network bandwidths. Further, the
available buffer space on hosth at timet is limited byBh(t).

Our task is to devise astrategy for data dissemination that satisfies the resource constraints and provides
each host inD with the requested data, over time. (More precisely, the actions required to follow the strategy
at run time are required to be simple and efficient and exclude, for example,query replanning). Specifically,
a data dissemination strategy in this context consists of a collection of rules thatdetermine the manner in
which hosts transmit data amongst themselves at any point in time. In addition to specifying the initial setup,
such a strategy will indicate when and how the setup is modified (typically in response to changes inIh, Oh,
andBh over time). We note that we are required to provide adistributed strategyover time, not simply a
centralized solution to a snapshot of the problem parameters at some instantin time. In particular, we cannot
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assume non-local knowledge of hosts, network conditions, and data repositories at a host. Of course, we
may convert a static centralized solution to a dynamic distributed using periodic re-evaluation and one of
the several standard methods for maintaining distributed state . However, such an approach would be very
inefficient for even a small number of hosts.

Most existing work that addresses the problem of selective data dissemination is designed for a con-
trolled, centralized environment. Siena [3] is an event-based publish subscribe system that uses a set of
special broker nodes in the network to maintain state and forward data to clients. It uses techniques like
query aggregation for efficient filtering, and is designed to work with multiplebrokers to scale to a large
set of subscribers. Continuous query systems like NiagaraCQ [8] use grouped subscription queries, cou-
pled with change-based and timer-based events, to notify interested clients of changes in an available data
source. Work on efficient filtering systems, such as XFilter [1] and YFilter[12], concentrates on developing
fast algorithms for matching a stream of documents against a large set of queries. Our work is designed to
distribute data in a completely decentralized, autonomous environment. While this assumption precludes us
from using several of the techniques used in the above work, our methods are designed to be able to trans-
parently use those existing techniques that only require local computation (e.g., the filtering component).

The remainder of the paper is organized as follows. Section 2 outlines our methods for data dissemi-
nation in an interimistic environment. Section 3 describes an experimental evaluation of our methods. We
describe related work in Section 4 and conclude in Section 5.

2 Interimistic Data Dissemination

We now consider a following specific instance of the general problem described in the Section 1. We
stress that our discussion below addresses only a part of the generalproblem, and makes some simplifying
assumptions. For example, we assume that the data of interest is specified byindicating the source of a
data stream along with an XPath expression. We do not address how the source itself is identified (perhaps
using a replicated directory) or how application needs are mapped to XPath (a task that has been addressed
elsewhere).

There is a single sources of XML documents that arrive in streaming form. Each hosth ∈ H se-
quentially subscribes to documents using an XPath filter expression. Nodeshave a limit on the number of
network connections (fan-out). We wish to determine a strategy for efficiently disseminating the documents
according to the subscriptions while honoring the fan-out constraints. (In effect, we are using simplified
variants of the bandwidth constraints introduced in Section 1.) Further, the stream of document is subject to
frequent changes in characteristics (resulting in major changes to statistics). The main challenge is devising
protocols that adapt to two kinds of changes at low overhead: (1) hostsjoining and leaving the network and
(2) changes in data characteristics.

A naive solution to this problem is to multicast the stream to each node, with queryevaluation done at the
individual nodes. However, this approach would entail a significant communication overhead, especially for
participants with low-selectivity queries. We seek a method that organizes nodes into a network that takes
advantage of the commonalities among subscriptions. However, our focus ison a low-overhead protocol
that can respond rapidly to changes in membership, subscriptions, and data characteristics.

Consider the following simple strategy: When a host arrives (or issues a subscription), it first requests a
direct connection tos. In the likely event that such a connection is unavailable (due to the fan-out constraint),
s forwards the request to one of its children,c. (We view the network as a multicast tree withs as the root.)
The child chosen is one whoseeffective subscription has the largest overlap with the new subscription. Here,
a node’s effective subscription is the smallest subscription that contains (in a query-containment sense) the

355



www.manaraa.com

{NASDAQ,*}{NYSE, *}

{*, "IBM"} {NASDAQ, "MSFT"} {NASDAQ, "IBM"}

1

0

2

35 4

61 2 3 4 5

Documents

Figure 1: Example CoDD System

subscriptions of all hosts in the subtree rooted at that node. Ifc is able to accepts as a child (i.e.,c’s degree
has not reached the limit),s connects toc. Otherwise, the procedure is repeated recursively. Thisjoin
protocol is the static part of the strategy.

The dynamic part comes into play in terms of periodic reorganizations (triggered by events such as a
node determining it’s effective subscription being too large compared to its original subscription). The re-
organization protocol itself is fairly straightforward, along the lines of the join protocol. The interesting
difference is that instead of moving down the tree froms usingintensional overlap of the subscriptions as
a guide, we useextensional overlap of their recent results. The reason is two-fold. On the one hand, exten-
sional overlaps (estimated by intersecting the document identifiers of recent results for the two subscriptions)
are determined much more efficiently than intensional overlaps [6] (which require query-containment and
common-subexpression computations). On the other, they may be effectiveat determining overlaps that do
not exist based on the known constraints on data, but that recent documents exhibit.

We have implemented these ideas in CoDD, a system for data dissemination in a serverless environment.
Unlike traditional systems that maintain a centralized infrastructure for queryprocessing and data delivery,
CoDD does not assume any server nodes. Instead, CoDD provides protocols that allow clients to organize
themselves into a data-aware overlay network that is used to disseminate data based on subscriptions.

Each node in a CoDD system maintains simple statistics on the data that it forwards, and uses this
information to make decisions for creating and maintaining the dissemination network. The protocols try
to minimize the amount of extraneous data received by each node, which is data that the node must receive
only to serve its downstream peers. The protocols do not rely on any centralized computation, and use
reorganization to adapt to changes in the distribution of the queries and datastream. The following example
illustrates some of the main ideas.

Example 1 Figure 1 suggests a distributed system for disseminating streaming data emerging from node
0. The data consists of a stream of attributed data items that contain some stock quote information. Each
of them are in the form{Exchange, Symbol}, which describes the name of the exchange and the company
corresponding to each quote. Each node subscribes to a subset of thedata using a set of constraints on these
attributes. For example, Node 2 has a query{NASDAQ, ∗}, which matches all quotes from the NASDAQ
exchange. Similarly, Node 3 subscribes to documents containing Microsoftquotes from NASDAQ.

The dissemination protocol dynamically creates a tree-structured overlay network, with the data source
as root and data flowing down the tree. Nodes join the system in increasing order of their IDs. Suppose
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each node permits a maximum fanout of 2. (We pick a low value for illustration using a small example. In
practice, values are likely to be in the range 4 through 10.) Every node filters documents needed by each of
its subtrees before sending them downstream. Note that each of the queries for nodes 3 and 4 is contained in
the query of node 2. Therefore, adding them as children of 2 entails no overhead in terms of the documents
sent down that subtree.

Now consider the addition of node 5. Node 5 subscribes to documents with quotes for IBM, irrespective
of the stock exchange. Since there are no containment relations for node5 with any of the existing nodes,
its addition entails some extraneous data on the network. Further, lack of knowledge of future document
distributions and node arrivals and departures makes it difficult to predict the optimal position for node 5.
For example, the system might determine that the best place to add it is as a child of node 1. This has the
nice properties that the fanout constraint is not violated, and adding it asa child of 1 (instead, say, as a child
of 3) results in low data latencies.

Note however, that in general there might be little overlap between the queries for 1 and 5, and that this
is not clear by comparing their respective subscription queries. For example, it might be the case that the
only data items that satisfy the query of 5 are from the NASDAQ exchange. The system should be able to
determine this extensional commonality as soon as possible, and might decide to reorganize the topology to
better exploit this overlap (for example, by moving node 5 as a child of node 4).

3 Experimental Evaluation

The current implementation of CoDD consists of a set of Java classes, which can be deployed in a dis-
tributed setting. We have also developed a simulator for nodes, which allows us to test a large number of
configurations locally. We conducted our experiments using the Sun Java SDK version 1.4.101 running
on a PC-class machine with a 1.6 GHz Pentium IV processor and 256 MB of mainmemory, running the
Redhat 9 distribution of GNU/Linux (kernel 2.4.22). We simulate network datatransfers using standard in-
terprocess communication mechanisms, such as local pipes for the simulator and sockets for the distributed
deployment of CoDD. Each node runs an instance of a query engine corresponding to the data and query
language in use. This engine evaluates each child’s filter query on each data item, and enqueues the item to
be sent to each of the children whose filter query it satisfies.

The primary metric we study is the network overhead. Consider the transferof a data item over a network
link. If the item does not satisfy the destination’s subscription, the transferis termedextraneous. (The item
may be useful to one of the node’s descendants in the multicast tree.) A node’s overhead is computed by
dividing the number of extraneous transfers sent to the node by the total number of transfers sent to it.
Similarly, the system overhead is computed by dividing the number of extraneous transfers (occurring over
all links in the network) by the total number of transfers. In some cases we are interested in measuring
system average over the set of nodes that potentially receive extraneous items (i.e., the non-leaf nodes), and
we refer to this as the interior node overhead.

Our test dataset is an abstraction of the mapping between data and subscriptions. We assign nodes to
one or more ofk category buckets. Intuitively, each bucket represents an interest class. We usek = 20 by
default. Subscription queries are modeled by mapping each data item to everymember of a fixed number
of these buckets. The selectivity (s) of the query set for each experiment is defined as the fraction of the
total number of documents a query is mapped to, averaged over the total number of queries. We model
changes in data distribution by performing a random shuffle on the buckets, at a rate determined by the
change-frequency parametercf . Each shuffle operation consists of splittingc buckets into two sub-buckets
and merging uniformly randomly chosen pairs of these sub-buckets to formnew mappings. We usec = k/5
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Figure 2: Overhead versus Reorganization Frequency

by default. The default synthetic dataset we used had a selectivity (s) of 0.2, with 400 nodes (n), and
10000 documents (d) being published in the system. The document distribution was made to change every
200 documents (cf ), and the default fanout (f ) was6. The reorganization was initiated after every200
documents were published in the system, by nodes that experienced an overhead greater than a threshold
(rthresh) of 0.2.

Figure 2 summarizes the results of our experiments studying overhead with a changing document distri-
bution for the default synthetic dataset described above, using a fanout of 6. The figure displays the overhead
of the top 100 interior CoDD nodes with and without reorganization (CoDD-Rand CoDD-NR, respectively),
ranked according to their overhead. Overhead for leaf nodes is always zero, since they do not need to accept
items for the purpose of transferring them to their descendants. Reorganization is seen to significantly lower
overhead: the average overhead decreases by over 50% as a result of initiating reorganization, indicating
that reorganization allows CoDD to adapt well to changing data distributions.

We also compared our system with Siena [3], an event-based publish-subscribe system used to selec-
tively disseminate data to a large set of subscribers. Siena uses a set of coordinated brokers, with each client
being mapped to one broker. Brokers communicate with each other depending on the requirements of the
clients they serve. This design is significantly different from that of CoDD, and is based on a centrally
controlled setup of the server environment. In contrast, CoDD assumes nocentral coordination. Neverthe-
less, Siena is the implementation that is closest to CoDD. For purposes of comparison, we emulate CoDD’s
server-less environment using Siena as follows. The network is built incrementally, with a fraction of ran-
domly selected nodes designated as brokers. These nodes are connected in a balanced tree topology, and
clients connect to a uniformly randomly selected server in this network. We use f clients per server, where
f models the fanout constraint in the corresponding CoDD environment.

Figure 3 depicts the results of experiments comparing the overheads of Sienaand CoDD using the default
dataset. This experiment favors Siena because the overhead of Siena isonly due to the designated broker
nodes. We do not model the overhead incurred by protocols used to setup the brokers. (Recall that Siena
assumes some centralized control.) Nevertheless, we note that CoDD perform well because it generates
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topologies that are data-aware. The overhead of Siena dips below that of CoDD atx = 60 because only
interior nodes incur any overhead in either system, and the number of suchnodes is fewer in Siena because
of the balanced tree that it creates.

In Figure 4, we summarize our study of the effect of fanout on overhead. We observe that the overhead
in CoDD drops rapidly as fanout is increased from 2 to 4, with further increases in fanout providing only
minor improvements. This result suggests that it is not necessary to use highfanouts, which have the
effect of increasing the processing and network load on each node. In contrast, Siena’s overhead gradually
increases as fanout is increased. This result may be explained by notingthat increasing the fanout increases
the number of children for each interior node in the tree. These nodes areusually going to have little overlap
with their new children, and thus their overhead is likely to increase significantly.

Figure 5 summarizes the results of experiments varying the number of nodes inthe system, with two
fanouts (4 and 6), using Siena and CoDD, the latter both with (CoDD-R) andwithout (CoDD-NR) reorga-
nization. The figure suggests that the overhead is substantially lowered byreorganization. Further, the rate
at which overhead increases with increasing network size is lower for thereorganization case.

4 Related Work

4.1 Publish-subscribe systems

Siena [3] is a closely related event-based publish-subscribe system. Clients in Siena subscribe to messages
by registering subscription queries. Data messages are routed using cooperating brokers that share sub-
scription information. The primary data model used in Siena represents events as a set of typed attributes.
Queries express constraints over a subset of these attributes. Subscriptions are aggregated using internal
data structures that describe a partial order on the covering relationships of these queries, and that can be
efficiently traversed to match incoming notifications. The brokers comprise a centralized infrastructure that
the protocol maintains, and scalability is achieved by adding brokers to the system. SIFT [18] is a keyword-
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based text filtering and dissemination system for Internet News articles. Itsupports two profile models,
one that does exact boolean predicate matches, and one that does a fuzzy match using a similarity value
assigned to every (document, profile) pair. The Gryphon [14] system implements data transformation and
dissemination using a similar architecture. An information flow graph is used to describe the flow of events
in the system, and each node in the graph implements operators that merge, transform, filter and interpret
data items. This graph is then optimized and deployed on a network of brokers, which are used for data
delivery. CoDD differs from these systems by using protocols that are decentralized, and that work well
with loosely-coupled subscriber nodes without centrally controlled servers. CoDD also enables resource-
poor nodes to participate because nodes can manage their level of cooperation using capacity constraints and
reorganization. Another difference is the use of extensional overlapsin CoDD. While this feature precludes
methods that take advantage of specific features of the query language,it permits easy application of our
protocols to a variety of data models and query languages.

Xlyeme [17] is a system used in conjunction with publish-subscribe systems that tackles the problem of
finding the events associated with monitoring queries that are satisfied by incoming documents. It uses a
hierarchy of hash tables to index sets of atomic events that compose more complex events. Le Subscribe [13]
proposes a predicate model to specify subscriptions. To match incoming events (i.e., a set of attribute
value pairs) with predicates efficiently, all predicates are indexed, and all subscriptions are clustered by
their common conjunctive predicates. A cost model and algorithms are developed to find good clustering
structure and to dynamically optimize it. A common feature of these systems, in contrast with CoDD, is the
use of restricted profile languages and data structures tailored to the complexity of the languages in order to
achieve high throughput.

4.2 Multicast in Networking literature

Network layer multicast [11] is an efficient mechanism for packet delivery in one-to-many data transfer
applications. It uses protocols operating in the interior of the network that create a connected tree, with the
clients at the leaves of the trees, such that the length of the path from the root to each client along the tree is
close to the underlying network path. End system multicast [15, 16] pushesthe functionality needed to create
this tree to edge nodes on the network, and the data is transmitted over an overlay architecture. The tradeoff
for using this end-to-end approach is a sub-optimal performance in terms of network paths and number of
duplicate packets on each link. The hierarchical approach used by CoDD is similar to the approach taken in
NICE [2], an end system multicast protocol that organizes nodes in a layered tree hierarchy, and is designed
to have low control overheads and scale well with the size of the participantset. The fanout constraint is
captured in NICE using a parameter that determines the number of nodes at each layers, and bounds the
number of outgoing connections for each node. CoDD works in a more general environment, where the data
is disseminated selectively to participating clients, and the topology is constructed according to implicit
constraints imposed by each clients requirements and the data distribution.

Content-based multicast (CBM) in ad-hoc networks [19] describes a similarproblem in wireless sensor
networks, where the data needs to be multicast to a subset of the group based on its content. Sensors push
data to neighboring nodes, and clients pull data from these nodes. Geographical regions are divided into
blocks, and an election mechanism creates leader nodes for each block that are responsible for coordinating
the local dissemination. In a CBM system, mobile node express interest in data that is ad distance away, or
that will be available after timet (assuming a relative-velocity of the node towards the source). In contrast,
CoDD uses general-purpose query languages that allow nodes to express more precise subscription inter-
ests. Further, CBM concentrates on wireless node mobility, and uses leader nodes to simulate a centralized
infrastructure, while CoDD assumes a decentralized, connected environment that allows it to make more
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general-purpose optimizations (like reorganization).

4.3 Filtering Systems

Filtering systems are designed to efficiently match data items with a set of predicates expressed in a query
language specific to the data model. XFilter [1] uses an XML data model and encodes XPath queries as
FSMs by mapping location steps in the expression to machine states. Arriving XML documents are parsed
with an event-based (SAX) parser, and the events raised during parsing are used to drive the FSMs through
their various transitions. A query is determined to match a document if during parsing an accepting state is
reached in the corresponding FSM. YFilter [12] extends this idea for multiplequeries, by merging common
prefixes into a single NFA, which is processed once for multiple queries. This approach makes it possible to
share processing costs between multiple queries, and reduces the numberof machine states that need to be
maintained. There has also been related work on maintaining index data structures for efficiently filtering
data against a set of queries. In contrast with XFilter, XTrie [7] indexeson input substrings that contain
parent-child operators rather than element names. This allows it to share theprocessing of common sub-
strings among queries using this index, and allows it to decrease the number of index probes necessary and
avoid redundant matchings. In our description of CoDD, we present policies to create topology structures
that are independent of the data model being used. The filtering component in the system can be replaced
by any of these techniques to enable fast filtering of data streams without any change to the topology man-
agement protocols.

Work onQuery Merging seeks to reduce the cost of answering a set of subscription queries bygrouping
similar queries, such that the aggregated queries match a superset of the documents matched by each input
query. Given a setQ of queries and a cost model for answering these queries, the task is thatof determining a
collectionM of subsets ofQ such that evaluating queries as suggested byM minimizes cost. Previous work
has shownQM to be NP-Hard in the general case(|Q| > 2), by reducing it to the set cover problem [10].
This work also quantifies the effect of merging for various cost models, and presents a set of heuristics for
approximating theQM problem. While CoDD uses similar techniques to group queries, it does so without
assuming a-priori knowledge of all nodes (and their respective queries) that will participate in the dissemi-
nation. Instead of relying on heuristics to try and optimize the query merging, ituses adaptive reorganization
combined with data-independent statistics on query matches to maintain low overhead topologies.

4.4 Similar approaches in Pervasive Computing:

The decentralized services provided by CoDD have several characteristics that are similar in nature to the
resource discovery problem in pervasive computing environments. Forexample, in the VIA system [4],
domains organize into clusters based on their resources. Resources are described using a list of attribute-
value pairs. Queries are specified as a set of constraints on a subset of these attributes. Clusters are built using
upper-bound queries that are created by replacing some constraints bywildcard constraints. These upper-
bound queries are then used to discover commonalities in metadata and to build a topology corresponding
to these commonalities in a bottom-up fashion. VIA∗ [5] extends these techniques to allow queries to
be generalized based on an impedance parameter. The query impedance isthe average number of times
a data attribute does not match a query attribute, and describes the relevantimportance of that attribute
in contributing to query matches. The extensional method for grouping nodes used by CoDD may be
viewed as a generalization of this idea. The emphasis in CoDD is low-overhead protocols for dynamic
environments that emphasize node autonomy. In VIA, groups of nodes are managed by an administrative
domain controller. It would be interesting to explore combinations of these methods.
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5 Conclusion

In this paper, we motivated the need for data management in interimistic environments. We discussed the
characteristics of such environments and the design guidelines resulting from them. We presented our work
on the problem of disseminating data in such environments using a server-less network of computers that
is in a state of continual change. Our methods are based on simple, low-overhead network-formation and
reorganization protocols. We presented a brief experimental study that suggests that our protocols cope well
with changes to both the network (as host join and leave) and data.

In continuing work, we are conducting a more thorough experimental evaluation of our protocols. We
also hope to extend our protocols to adapt to a wider range of changes. Further, we are exploring different
formulations of the general problem of data management in an interimistic environment.
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